Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability.

نویسندگان

  • B M Ahmer
  • M G Thomas
  • R A Larsen
  • K Postle
چکیده

TonB protein appears to couple the electrochemical potential of the cytoplasmic membrane to active transport across the essentially unenergized outer membrane of gram-negative bacteria. ExbB protein has been identified as an auxiliary protein in this process. In this paper we show that ExbD protein, encoded by an adjacent gene in the exb cluster at 65', was also required for TonB-dependent energy transduction and, like ExbB, was required for the stability of TonB. The phenotypes of exbB exbD+ strains were essentially indistinguishable from the phenotypes of exbB+ exbD strains. Mutations in either gene resulted in the degradation of TonB protein and in decreased, but not entirely absent, sensitivities to colicins B and Ia and to bacteriophage phi 80. Evidence that the absence of ExbB or ExbD differentially affected the half-lives of newly synthesized and steady-state TonB was obtained. In the absence of ExbB or ExbD, newly synthesized TonB was degraded with a half-life of 5 to 10 min, while the half-life of TonB under steady-state conditions was significantly longer, approximately 30 min. These results were consistent with the idea that ExbB and ExbD play roles in the assembly of TonB into an energy-transducing complex. While interaction between TonB and ExbD was suggested by the effect of ExbD on TonB stability, interaction of ExbD with TonB was detected by neither in vivo cross-linking assays nor genetic tests for competition. Assays of a chromosomally encoded exbD::phoA fusion showed that exbB and exbD were transcribed as an operon, such that ExbD-PhoA levels in an exbB::Tn10 strain were reduced to 4% of the levels observed in an exbB+ strain under iron-limiting conditions. Residual ExbD-PhoA expression in an exbB::Tn10 strain was not iron regulated and may have originated from within the Tn10 element in exbB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ExbB and ExbD do not function independently in TonB-dependent energy transduction.

ExbB and ExbD proteins are part of the TonB-dependent energy transduction system and are encoded by the exb operon in Escherichia coli. TonB, the energy transducer, appears to go through a cycle during energy transduction, with the absence of both ExbB and ExbD creating blocks at two points: (i) in the inability of TonB to respond to the cytoplasmic membrane proton motive force and (ii) in the ...

متن کامل

Role of the Haemophilus ducreyi Ton system in internalization of heme from hemoglobin.

By cloning into Escherichia coli and construction of isogenic mutants of Haemophilus ducreyi, we showed that the hemoglobin receptor (HgbA) is TonB dependent. An E. coli hemA tonB mutant expressing H. ducreyi hgbA grew on low levels of hemoglobin as a source of heme only when an intact H. ducreyi Ton system plasmid was present. In contrast, growth on heme by the E. coli hemA tonB mutant express...

متن کامل

ExbB protein in the cytoplasmic membrane of Escherichia coli forms a stable oligomer.

In Gram-negative bacteria like Escherichia coli the ExbB-ExbD-TonB protein complex is anchored to the cytoplasmic membrane and is involved in energization of outer membrane transport. Outer membrane proteins catalyze energy-coupled transport of scarce nutrients. Energy is derived from the protonmotive force of the cytoplasmic membrane which is transferred through ExbB-ExbD-TonB to the outer mem...

متن کامل

The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.

The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters....

متن کامل

TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization

Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 16  شماره 

صفحات  -

تاریخ انتشار 1995